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Abstract 

Background:  Regulation of temperature is clinically important in the care of neonates because it has a significant 
impact on prognosis. Although probes that make contact with the skin are widely used to monitor temperature and 
provide spot central and peripheral temperature information, they do not provide details of the temperature distribu-
tion around the body. Although it is possible to obtain detailed temperature distributions using multiple probes, this 
is not clinically practical. Thermographic techniques have been reported for measurement of temperature distribution 
in infants. However, as these methods require manual selection of the regions of interest (ROIs), they are not suitable 
for introduction into clinical settings in hospitals. Here, we describe a method for segmentation of thermal images 
that enables continuous quantitative contactless monitoring of the temperature distribution over the whole body of 
neonates.

Methods:  The semantic segmentation method, U-Net, was applied to thermal images of infants. The optimal com-
bination of Weight Normalization, Group Normalization, and Flexible Rectified Linear Unit (FReLU) was evaluated. 
U-Net Generative Adversarial Network (U-Net GAN) was applied to thermal images, and a Self-Attention (SA) module 
was finally applied to U-Net GAN (U-Net GAN + SA) to improve precision. The semantic segmentation performance of 
these methods was evaluated.

Results:  The optimal semantic segmentation performance was obtained with application of FReLU and Group 
Normalization to U-Net, showing accuracy of 92.9% and Mean Intersection over Union (mIoU) of 64.5%. U-Net GAN 
improved the performance, yielding accuracy of 93.3% and mIoU of 66.9%, and U-Net GAN + SA showed further 
improvement with accuracy of 93.5% and mIoU of 70.4%.

Conclusions:  FReLU and Group Normalization are appropriate semantic segmentation methods for application to 
neonatal thermal images. U-Net GAN and U-Net GAN + SA significantly improved the mIoU of segmentation.
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Background
Neonatal body temperature is known to have a signifi-
cant effect on prognosis [1–5], and body temperature 
is inversely correlated with mortality in infants [1, 2, 4]. 
As temperature management is clinically important in 
neonatal care, a number of organizations, including the 
World Health Organization (WHO), have proposed 
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guidelines for neonatal temperature management [6–9]. 
However, there is still a lack of evidence regarding the 
optimal body temperature for infants [8]. Karlsson et al. 
[10] investigated the differences in temperature of the 
head, body, arms, legs, and feet of healthy infants, and 
reported that differences in skin temperature at different 
sites can be used for diagnosis of infants [10–15]. Knobel 
et al. [15] measured body temperature using thermistors 
attached to the abdomen and feet of very low birth weight 
(VLBW) infants, and reported its relation to peripheral 
vasoconstriction. These reports suggest the importance 
of temperature control and detailed regional temperature 
measurement in infants. However, these studies used 
contact-type probes, which are associated with a num-
ber of issues that lead to inaccuracy of measurements, 
including probe position, fixation method, contact with 
the skin, and the inability to measure the temperature 
distribution over the whole body. Therefore, a number 
of recent studies used infrared thermography, a non-
contact, continuous thermal imaging technique that uses 
infrared light emitted from objects in accordance with 
heat, which is assumed to be the surface temperature in 
neonates [16–21]. At present, contact-type probes are 
used for continuous temperature measurement, but their 
use is associated with hygiene risks and they can damage 
the fragile skin of infants. However, there is increasing 
interest in the application of neonatal thermography as 
it can reduce these risks. Medical adhesive-related skin 
injuries (MARSI) are a known clinical problem, which 
is particularly important in neonatal care, and the risk 
of such injuries must be reduced [22–24]. Knobel et  al. 
[16] examined the differences in temperature distribu-
tion between the chest and abdomen due to necrotizing 
enterocolitis (NEC) in VLBW infants, and reported that 
children with NEC had significantly lower abdominal 
temperatures compared to healthy infants. Using ther-
mal imaging, Knobel et  al. [17] also demonstrated that 
the temperature of the feet was higher than that of the 
abdomen within the first 12  h of life in VLBW infants. 
Abbas et  al. [18] developed a detailed measurement 
model to accurately measure body temperature in infants 
based on thermal images, and Ussat et al. [19] proposed a 
non-contact method for measurement of respiratory rate 
based on the temperature difference of inhaled air.

Therefore, there have been a number of studies on the 
utility of thermography for monitoring the body tem-
perature of infants. However, it was necessary to set the 
region of interest (ROI) manually for each analysis, pre-
venting continuous evaluation and therefore the evalua-
tion was not strictly quantitative.

To address this issue, there have been a number of 
studies regarding automated processing of ROIs by com-
puter. Duarte et  al. [25] and Rodriguez et  al. [26] used 

image processing methods, such as edge extraction and 
ellipse fitting, for automatic ROI extraction in thermal 
images of adults. However, these methods aim to exclude 
other regions from the ROI, and are unable to segment 
the human body into regions. Abbas et al. [27] proposed 
a method for tracking analysis points using temporally 
continuous thermal images of infants, which allowed 
analysis of the temporal variability of the analysis points. 
However, it was still necessary to set the analysis points 
manually in their method.

Deep Learning may be applicable to address the dis-
advantages of these methods. There has been significant 
progress in research on semantic segmentation, especially 
in the field of automatic driving [28–30]. The application 
of semantic segmentation to thermal images of infants 
would allow detailed analysis of global information. Ron-
neberger et  al. [31] proposed U-Net as a segmentation 
method for cellular images. U-Net has been used for seg-
mentation of biomedical images, and has been applied 
in a number of studies because of its stability and high 
performance. Antink et  al. [32] proposed a method for 
segmenting the body parts of neonates from RGB images. 
In addition, there have been a number of studies on auto-
matic classification of organs on magnetic resonance 
imaging (MRI) and computed tomography (CT) images 
[33–35]. Deep Learning has also been applied to thermal 
images for medical applications. Lyra et  al. [36] applied 
Yolov4 [37] to thermal images for automatic extraction 
of patients and medical staff and calculation of vital signs 
from the detected regions. Kwasniewska et  al. [38] per-
formed image resolution enhancement of thermal images 
to increase the accuracy of estimation of vital signs from 
thermal images. Moreover, Ekici et al. [39] applied Deep 
Learning to detect breast cancer in thermal images. How-
ever, the application of Deep Learning to thermal images 
in neonates has not been investigated in sufficient detail.

Generative Adversarial Network (GAN) is a Deep 
Learning method that has been under development in 
recent years. GAN is a learning method proposed by 
Goodfellow et  al. [40] in which a Generator network 
that generates images and a Discriminator network that 
determines whether an input image is a natural or gen-
erated image compete with each other. There have been 
a number of reports of the application of GAN in image 
style transformation, etc. [41, 42]. It has been applied 
in a number of fields, including Semantic segmenta-
tion, where the loss function is difficult to define. Self-
Attention (SA) [43] is a method that has had a significant 
impact on improving the performance of Deep Learning. 
There has been marked progress in the development of 
Deep Learning in the field of natural language process-
ing, and high-performance networks using the Attention 
mechanism have been proposed [44, 45]. SA is a method 
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that applies these techniques to image processing, ena-
bling more complex analysis by learning and assigning 
meaning to relationships between pixels, such as between 
words in a sentence. In conventional convolutional net-
works, local variations in an image are extracted and 
weighted to achieve detection. SA takes into account the 
relations between the intensities of the pixel values in 
weighting, making it possible to express changes in the 
importance of pixel values.

For continuous quantitative analysis of thermal images, 
semantic segmentation can be applied for automatic ROI 
setting in infants. In this study, we propose a suitable 
method for semantic segmentation of thermal images 
in infants. An accurate semantic segmentation method 
would enable detailed analysis of the temperature of each 
region of an infant’s entire body surface. This will ena-
ble early detection of diseases, such as sepsis and NEC, 
which are currently difficult to detect. Early detection of 
these diseases will lead to better prognosis and to new 
standards of care. Considering the extension to disease 
prediction using Deep Learning, we investigated meth-
ods of segmentation with the maximum possible accu-
racy and detail. The methods and their performance were 
evaluated using thermal images acquired in a clinical 
setting.

Methods
Twelve preterm infants without congenital or underly-
ing diseases, born at Nagasaki Harbor Medical Center 
(NHMC) and requiring incubator support, were included 
in this study. The characteristics of the patients are 
shown in Table  1. The median ± standard deviation 
(SD) of the gestational age of the infants included in the 
study was 34 ± 2.8 weeks, birth weight was 2053 ± 712 g, 
mean age at the start of imaging was 0 + 0.8  days, and 
male:female ratio was 7:5. This study was approved by the 
Ethics Committee of Nagasaki Harbor Medical Center 
(Approval No. NIRB No. R02-006). The research was car-
ried out in accordance with the Declaration of Helsinki.

A thermography camera was installed on the upper 
part of the incubator at the side closest to the feet of the 
infant. Data with a resolution of 320 × 256 were acquired 
at 1 fps using a thermal camera (FLIR A35; FLIR, Mid-
dletown, NY, USA). Thermographic images with 

various variations in size, position, etc., were captured 
for 66–140 h in each case, for a total of 1032 h. Figure 1 
shows an example of a thermal image obtained using this 
system.

A total of 400 images were selected at random from 
the thermographic images, excluding those taken dur-
ing treatment or nursing care by medical staff, and the 
ground truth was generated manually. The pixels of the 
thermal images were divided into five classes, i.e., head, 
body, arms, legs, and “other.” The cervical region was 
defined as the head, and the shoulder region was defined 
as part of the arm region. In addition, diapers, probes, 
tubes, respiratory masks, and hair in the images were 
strictly excluded as non-skin areas. The definition of 
ground truth was made by a skilled neonatologist, who 
also checked the generated ground truth, as shown in 
Fig.  2. Subsequent training and testing were conducted 
using the generated ground truth.

The network structure was based on U-Net for ther-
mal image segmentation, and we applied the Convolu-
tion–Batch Normalization–Rectified Linear Unit (ReLU) 
(CBR) structure used in ResNet [46]. As U-Net is often 
the first choice for semantic segmentation of medical 
images, it was also used in this study as the base archi-
tecture and was shown to be suitable for analyzing ther-
mal images of infants. The detailed network structure is 
shown in Table 2. The total network was a 22-stage fully 
convolutional network. A number of functions have been 
proposed to improve the performance of networks, but 
most have been evaluated only on RGB images, and there 
have been no reports of evaluation of thermal images. 
Therefore, Weight Normalization [47], Group Normali-
zation [48], and Flexible Rectified Linear Unit (FReLU) 
[49], which have already been evaluated on images, were 
applied to compare their accuracy on thermal images. 
Weight Normalization was replaced by convolution, 
Group Normalization by Batch Normalization, and 
FReLU by ReLU, and all combinations were evaluated. 
Preliminary experiments were conducted at 2-, 4-, 5-, 8-, 
and tenfold at the image level, and the experiment was 
assumed to be conducted at fourfold, where accuracy 
began to drop. With fourfold cross-validation, the clas-
sification accuracy of segmentation and Mean Intersec-
tion over Union (mIoU) were used as evaluation metrics. 
Cross Entropy Loss was used as the loss function. No 
pre-training was performed.

Furthermore, based on the network with the high-
est accuracy in the above comparison, GAN and SA 
were applied to extend the network, and the accuracy 
was evaluated again. Here, we extended U-Net GAN 
[50] proposed by Schonfeld et al., an image generation 
method that uses U-Net as a Discriminator, and applied 
it to neonatal thermography. This method optimizes 

Table.1  Participant characteristics

Characteristic (n = 12) Median ± SD

Gestational week at delivery 34 ± 2.8

Birth weight (kg) 2053 ± 712

Age (days) 0 ± 0.8

Sex (male) 7 (58%)
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not only the entire image, but also each pixel, resulting 
in images with fewer errors than traditional GAN. The 
segmentation system using U-Net GAN is shown in 
Fig. 3, where x represents the correct data for segmen-
tation and T  represents the input thermal image. The 
output of the generator that performs the segmentation 
of the thermal image T  is denoted by G(T ) . The Dis-
criminator has Encoder and Decoder sections, and its 
output consists of Denc(x) , which predicts the Real/Fake 
classification of the whole image, and Ddec(x) , which 
predicts the Real/Fake classification of each pixel.

The network with the highest accuracy in the experi-
ments described above is used as the Generator of 
U-Net GAN. Here, we conducted preliminary experi-
ments, and the Discriminator network was made 
with four layers of CBR blocks and half the number 
of channels. Using U-Net GAN, segmentation results 
were constrained to be similar to the manually gener-
ated ground truth, while preserving accuracy and sup-
pressing overfitting. The detailed network structure of 
U-Net GAN Discriminator is shown in Table  3. The 
encoder output of the Discriminator is average-pool-
ing of the most downscaled image data of U-net, and 
the full connect is used to identify the real/fake binary 
value. Therefore, the encoder output is one data output 

for one image. The decoder output has the same image 
size as the input and classifies real/fake on a pixel-by-
pixel basis.

In addition to U-Net GAN, SA was used to improve per-
formance. Unlike RGB images, thermal images represent 
single-channel data of temperature only, and the relation-
ships between the temperatures are important for the 
analysis. Therefore, application of the SA module to the 
network will make it possible to evaluate not only the spa-
tial relations but also the appearance patterns of heat and 
feature intensities, which will enable more detailed analy-
sis. The structure of the network with incorporation of the 
SA module into U-Net GAN (U-Net GAN + SA) is shown 
in Table  2. The number of channels remains unchanged, 
although the depth of the network is increased due to the 
bottleneck structure. The loss function of the Discrimina-
tor, LD , was calculated using Eq. 1:

where LDenc ,LDdec
 , and Lcons

Ddec
 are the Encoder Loss, 

Decoder Loss, and Consistency Loss of the Discrimina-
tor, respectively, and are expressed in Eqs. 2–4:

(1)LD = LDenc
+ LDdec

+ L
cons

Ddec

(2)
LDenc = −Ex[logDenc(x)]− ET [log (1− Denc(G(T )))]

Fig. 1  Thermographic images. Many variations in thermal images were obtained with different sizes and positions of the infants: blue, 28 °C; red, 
40 °C
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where mix(x1, x2,M) is the CutMix function [51], which 
mixes x1 and x2 according to the mask M , and width and 
height are the width and height of the image, respec-
tively. The loss is given by LDenc to correctly predict the 
Real/Fake classification of the whole image, and by Ldec 

(3)Ldec = −Ex

�
�

i,j log [Ddec(x)]i,j

width ∗ height

�

− ET





�

i,j log
�

1−
�

Ddec(G(T )]i,j

�

)

�

width ∗ height





(4)L
cons
Ddec

= ||Ddec(mix(x,G(T ),M)−mix(Ddec(x),Ddec(G(T )),M)||2

to correctly predict the Real/Fake classification of each 
pixel. Consistency Loss also improves the stability of the 
Discriminator’s prediction by placing constraints on the 
CutMix of Ddec(x) and Ddec(G(T )) and the prediction 
results of the CutMix of x and G(T ) to be the same. The 
loss function, LG , of the generator is also shown in Eq. 5:

(5)LG = −ET

[

logDenc(G(T ))+

∑

i,j log [Ddec(G(T ))]i,j

width*height

]

+�·

∑

i,j CrossEntropy(x,G(T ))

width ∗ height

Fig. 2  Examples of thermal images and ground truth. The head is shown in red, the body in yellow, the arms in green, the legs in blue, and the 
other regions in black
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The first term represents the loss of the Discriminator 
and constrains segmentation to be similar to the ground 
truth. CrossEntropy(x1, x2) represents the Cross Entropy 
Loss, and � is a variable that balances the first and second 
terms; in this paper, � = 0.1.

As in the previous experiment, fourfold cross-valida-
tion was performed to evaluate U-Net GAN and U-Net 
GAN + SA. In addition to classification accuracy and 
mIoU, a Confusion Matrix including U-Net was used as 
an evaluation metric.

For training, a PC with an AMD Ryzen 7 3700X CPU, 
64  GB of memory, and a GeForce RTX 3090 GPGPU 
running Windows 10 was used. We used Python 3.7 as 
the programming language and Pytorch 1.1 was used as 
a deep learning package. The optimal values of learning 
parameters (i.e., network depth, number of channels per 
layer, batch size, learning rate) were determined through 
a preliminary experiment. The number of training epochs 
was determined before the model began overfitting. The 
parameters used for training are shown in Table  4. For 
Augmentation, we performed a vertical flip of the image 
and added random noise to each pixel. AMSGrad [52] 
was used as the optimizer.

Statistical analyses were conducted to compare the 
accuracy between the methods. The Steel–Dwass test 
was applied as a nonparametric multiple comparison 
test. All analyses were performed using JMP 15 statisti-
cal software. For a detailed evaluation of segmentation 
performance, the Hausdorff distance and IoU for each 
region were calculated.

Table.2  Detailed network configuration of U-Net, U-Net GAN 
Generator, and U-Net GAN + SA Generator

Layers Output size U-Net U-Net GAN + SA

Input 320 × 256 × 1

Convolution 320 × 256 × 16 3 × 3, 16 d 3 × 3, 16 d

Downscale 160 × 128 × 32 5 × 5, 32 d, CBR
3 × 3, 32 d, CBR

1 × 1, 32 d
7 × 7, 32 d, SA
1 × 1, 32 d

Downscale 80 × 6464 5 × 5, 64 d, CBR
3 × 3, 64 d, CBR

1 × 1, 64 d
7 × 7, 64 d, SA
1 × 1, 64 d

Downscale 40 × 32 × 128 5 × 5, 128 d, CBR
3 × 3, 128 d, CBR

1 × 1, 128 d
7 × 7, 128 d, SA
1 × 1, 128 d

Downscale 20 × 16 × 256 5 × 5, 256 d, CBR
3 × 3, 256 d, CBR

1 × 1, 256 d
7 × 7, 256 d, SA
1 × 1, 256 d

Downscale 10 × 8 × 512 5 × 5, 512 d, CBR
3 × 3, 512 d, CBR

1 × 1, 512 d
7 × 7, 512 d, SA
1 × 1, 512 d

Upscale 20 × 16 × 256 5 × 5, 256 d, CBR
3 × 3, 256 d, CBR

1 × 1, 256 d
7 × 7, 256 d, SA
1 × 1, 256 d

Upscale 40 × 32 × 128 5 × 5, 128 d, CBR
3 × 3, 128 d, CBR

1 × 1, 128 d
7 × 7, 128 d, SA
1 × 1, 128 d

Upscale 80 × 64 × 64 5 × 5, 64 d, CBR
3 × 3, 64 d, CBR

1 × 1, 64 d
7 × 7, 64 d, SA
1 × 1, 64 d

Upscale 160 × 128 × 32 5 × 5, 32 d, CBR
3 × 3, 32 d, CBR

1 × 1, 32 d
7 × 7, 32 d, SA
1 × 1, 32 d

Upscale 320 × 256 × 16 5 × 5, 16 d, CBR
3 × 3, 16 d, CBR

1 × . 1, 16 d
7 × 7, 16 d, SA
1 × 1, 16 d

Convolution 320 × 256 × 1 3 × 3, 1 d 3 × 3, 1 d

Discriminator

Generator

Real/Fake

Input Prediction

Grand Truth

Loss

Real/Fake
per pixel

Fig. 3  Network diagram of U-Net GAN
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Results
The accuracy of segmentation using U-Net was evalu-
ated and the results are shown in Table 5. Even standard 

U-Net showed very high segmentation accuracy with 
a validation accuracy of 91.3% (SD 0.04%) and mIoU of 
57.8% (SD 0.15%). FReLU showed improvements of 0.6% 
(SD 0.04%) in accuracy and 3.1% (SD 0.16%) in mIoU, 
while Group Normalization showed improvements 
of 0.9% (SD 0.04%) in accuracy and 4.4% (SD 0.14%) in 
mIoU. However, Normalized Convolution decreased the 
accuracy by 0.2% (SD 0.05%), but improved the mIoU by 
3.1% (SD 0.15%). The best results were obtained with the 
combined application of FReLU and Group Normaliza-
tion showing 92.9% (SD 0.04%) accuracy and mIoU of 
64.5% (SD 0.15%).

U-Net GAN and U-Net GAN + SA showed validation 
accuracy of 93.3% (SD 0.03%) and 93.5% (SD 0.04%), rep-
resenting improvements of 0.7% and 0.9%, respectively, 
and mIoU of 66.9% (SD 0.13%) and 70.4% (SD 0.13%), 
representing improvements of 2.4% and 5.9%, respec-
tively, compared to the best results of U-Net (Table  6). 
Finally, the confusion matrices for U-Net, U-Net GAN, 
and U-Net GAN + SA are shown in Fig. 4. For each net-
work, the accuracy was 82%, 82%, and 87% for head, 82%, 
87%, and 88% for body, 66%, 72%, and 68% for arms, 
86%, 85%, and 81% for legs, and 94%, 97%, and 96% for 
other, respectively. The results of the Steel–Dwass test 
are shown in Table 7. Significant differences were found 
between several methods. The results of the Hausdorff 
distance and IoU for each region are shown in Tables 8 
and 9, respectively.

Discussion
All of the methods examined here showed highly accu-
rate classification performance. FReLU and Group Nor-
malization improved the classification accuracy and 
mIoU of U-Net, which was considered to be due to the 
improved representativeness of the network. Group Nor-
malization shows that normalization within the channels 
of the network is more effective than Batch Normaliza-
tion in this problem. This was because the input data 

Table.3  Detailed network configuration of U-Net GAN 
discriminator and U-Net GAN + SA discriminator

Layers Output size U-Net U-Net GAN + SA

Input 320 × 256 × 1

Convolution 320 × 256 × 8 3 × 3, 8 d 3 × 3, 8 d

Downscale 160 × 128 × 16 5 × 5, 16 d, CBR
3 × 3, 16 d, CBR

1 × 1, 16 d
7 × 7, 16 d, SA
1 × 1, 16 d

Downscale 80 × 64 × 32 5 × 5, 32 d, CBR
3 × 3, 32 d, CBR

1 × 1, 32 d
77, 32 d, SA
1 × 1, 32 d

Downscale 40 × 32 × 64 5 × 5, 64 d, CBR
3 × 3, 64 d, CBR

1 × 1, 64 d
7 × 7, 64 d, SA
1 × 1, 64 d

Encoder out 
( Denc(x))

5 ReLU
Average Pooling
Linear, 5d

ReLU
Average Pooling
Linear, 5 d

Upscale 80 × 64 × 32 5 × 5, 32 d, CBR
3 × 3, 32 d, CBR

1 × 1, 32 d
7 × 7, 32 d, SA
1 × 1, 32 d

Upscale 160 × 128 × 16 5 × 5, 16 d, CBR
3 × 3, 16 d, CBR

1 × 1, 16 d
7 × 7, 16 d, SA
1 × 1, 16 d

Upscale 0 × 256 × 8 5 × 5, 8 d, CBR
33, 8 d, CBR

1 × 1, 8 d
7 × 7, 8 d, SA
1 × 1, 8 d

Convolution 
( Ddec(x))

320 × 256 × 2 3 × 3, 2 d 3 × 3, 2 d

Table.4  Parameters used for training

Parameter Net U-Net GAN U-Net GAN + SA

Learning rate 0.01 0.01 (generator) 0.01 (generator)

1e−4 (discriminator) 1e−4 (discriminator)

Batch size 75 30 12

Epoch 200 100 100

Table.5  Segmentation performance using U-Net with and without normalized convolution, FReLU, and group normalization

Normalized 
convolution

FReLU Group normalization Accuracy (%) SD (%) mIoU (%) SD (%)

91.3 0.04 57.8 0.15

✓ 91.1 0.05 60.9 0.15

✓ 91.9 0.04 60.9 0.16

✓ 92.2 0.04 62.2 0.14

✓ ✓ 91.4 0.05 60.7 0.15

✓ ✓ 92.4 0.04 63.8 0.13

✓ ✓ 92.9 0.04 64.5 0.15

✓ ✓ ✓ 92.4 0.04 62.9 0.15
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consisted only of temperature information with similar 
backgrounds, so there were many regions with similar 
values, and Batch Normalization may have the effect of 
over-averaging the data. On the other hand, Normal-
ized Convolution showed a decrease in accuracy but an 
improvement in mIoU. Depending on the location of the 
thermal imaging camera and the view angle, the “other” 
region had 13–23 times more pixels than the “infant” 
region. Thus, Normalized Convolution may decrease the 
number of missed skin regions, but increase the percent-
age of false positive identification of other regions as skin 
regions. The application of U-Net with FReLU and Group 
Normalization showed 1.6% better accuracy and 6.7% 
better mIoU than ReLU and Batch Normalization. These 
results confirmed that the combined use of these tools 
resulted in significant improvements, especially in mIoU.

Using the network with FReLU and Group Normali-
zation applied to U-Net as a baseline, U-Net GAN and 
U-Net GAN + SA were confirmed to show beneficial 
effects.

Compared to the accuracy of U-Net of 92.9%, U-Net 
GAN showed a 0.4% improvement in accuracy and 2.4% 
improvement in mIoU, and U-Net GAN + SA improved 
accuracy by 0.6% and mIoU by 5.9%.

The results of the Steel–Dwass test showed signifi-
cant differences between several methods. In particu-
lar, FReLU alone showed a significant performance 

improvement. There was no significant difference 
between FReLU and U-Net GAN + SA, thus confirming 
the effectiveness of FReLU. U-Net GAN + SA showed 
significant differences in many cases compared to the 
other methods, confirming that it is a powerful method. 
However, there were no significant differences between 
the four sets of results: FReLU with Group Normaliza-
tion, FReLU with Group Normalization and Normal-
ized Convolution, U-Net GAN, and U-Net GAN + SA. 
This suggests that the performance improvement may be 
approaching its limit.

Similar results were obtained with Hausdorff distance. 
FReLU with Group Normalization, U-Net GAN, and 
U-Net GAN + SA performed better than the other meth-
ods in almost all regions, and the SD was also lower. In 
all methods, the Hausdorff distance was larger for the 
arms and legs than for the head and body. In IoU, Other 
was the highest in all methods, which may have been due 
to the lower temperature in the Other region compared 
to the neonate, thus making segmentation easier. U-Net 
GAN + SA showed better results for infant region seg-
mentation. SA was also effective in Semantic Segmenta-
tion of thermal images.

U-Net GAN is optimized by combining multiple loss 
functions. The Discriminator classifies the manually gen-
erated ground truth and the results of U-Net segmenta-
tion, and in addition to the conventional GAN evaluation 
on a per-image basis, it also evaluates and feeds back 
the results on a per-pixel basis. This yields not only 
higher performance than normal U-Net, but is also visu-
ally closer to the manually obtained ground truth. The 
accuracy was further improved in U-Net GAN + SA by 
changing the Convolution to SA. SA, which strictly eval-
uates the relationship between pixels, was considered to 
be effective as temperature images have lower value vari-
ation and dimensionality compared to RGB images. The 

Table.6  Segmentation performance of U-Net, U-Net GAN, and 
U-Net GAN + SA

Network Accuracy (%) SD (%) mIoU (%) SD (%)

U-Net 92.9 0.04 64.5 0.15

U-Net GAN 93.3 0.03 66.9 0.13

U-Net GAN + SA 93.5 0.03 70.4 0.13

Fig. 4  Confusion matrices of U-Net, U-Net GAN, and U-Net GAN + SA
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Table.7  Significant differences between the proposed methods

* * * * * *

* * * * * *

* ** ** *

* ** *
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*p < 0.01, **p < 0.05

Table.8  Hausdorff distance for each region

Head Body Arm Leg Other All (w/o other)

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

UNet 34.6 25.3 38.1 29.5 59.2 37.7 43.4 40.0 26.7 9.3 43.9 34.8

Normalized convolution 33.0 23.6 31.5 26.2 55.7 35.6 46.5 50.7 26.5 8.9 41.5 36.4

FReLU 31.2 21.3 31.2 22.6 58.4 38.0 42.8 40.0 25.5 9.1 40.8 33.3

Group normalization 30.3 18.2 30.1 21.9 63.4 40.0 50.7 48.6 25.8 9.5 43.4 36.9

Normalized convolution FReLU 27.8 18.9 31.1 25.6 57.2 37.1 47.9 47.5 25.5 9.2 40.8 35.7

Normalized convolution group 
normalization

30.4 21.3 30.0 20.6 64.9 34.1 52.9 50.0 26.7 9.9 44.3 36.3

FReLU group normalization 27.5 17.8 25.2 20.2 48.7 32.8 38.6 38.3 25.4 8.8 34.9 29.8

ALL 26.8 17.2 28.5 22.4 53.9 36.9 48.5 49.9 25.3 9.9 39.1 35.5

U-Net GAN 27.4 19.7 26.7 22.7 49.3 34.1 39.0 42.7 24.5 9.1 35.5 32.1

U-Net GAN + SA 27.1 17.7 26.7 22.7 46.3 32.6 41.4 42.1 23.7 9.4 35.2 31.1
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temperature image, ground truth, and images obtained 
by segmentation using U-Net, U-Net GAN, and U-Net 
GAN + SA are shown in Fig. 5. The results of all methods 

showed high accuracy, but the features differed between 
methods. U-Net segmented the images with smooth 
boundaries. On the other hand, it misdetected thin 

Table.9  IoU for each region

Head Body Arm Leg Other All

IoU (%) SD (%) IoU (%) SD (%) IoU (%) SD (%) IoU (%) SD (%) IoU (%) SD (%) IoU (%) SD (%)

UNet 50.8 0.16 52.1 0.16 41.6 0.17 53.5 0.23 91.1 0.03 57.8 0.15

Normalized convolution 57.5 0.14 48.5 0.15 47.4 0.15 59.8 0.23 91.5 0.03 60.9 0.14

FReLU 54.8 0.17 56.6 0.16 44.3 0.18 57.1 0.26 91.8 0.03 60.9 0.16

Group normalization 56.4 0.16 60.1 0.15 43.1 0.16 58.6 0.24 93.0 0.03 62.2 0.15

Normalized convolution FReLU 55.1 0.14 57.3 0.14 41.4 0.13 57.6 0.21 92.2 0.03 60.7 0.13

Normalized convolution group 
normalization

58.0 0.15 61.2 0.16 47.3 0.17 60.2 0.24 92.4 0.03 63.8 0.15

FReLU group normalization 59.2 0.16 62.3 0.15 47.7 0.17 61.4 0.23 92.0 0.03 64.5 0.15

ALL 58.2 0.15 59.3 0.15 47.9 0.16 58.0 0.25 91.3 0.03 62.9 0.15

U-Net GAN 61.5 0.14 64.3 0.14 49.1 0.15 66.4 0.2 93.4 0.03 66.9 0.13

U-Net GAN + SA 64.8 0.14 67.9 0.14 57.9 0.14 67.6 0.2 93.6 0.02 70.4 0.13

Fig. 5  Examples of the differences in segmentation results between U-Net, U-Net GAN, and U-Net GAN + SA. a Input. b Ground truth. c U-Net. d 
U-Net GAN. e U-Net GAN + SA
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regions, such as cables on the body surface, resulting in 
finely over-segmented regions. U-Net GAN yielded a 
smoother segmentation shape and unnatural segmenta-
tion was prevented, and U-Net GAN + SA successfully 
excluded fine non-skin areas, such as cables and the 
shapes near the boundaries of the segmented areas fol-
lowed the edges of the temperature information. These 
results were attributed to the strict evaluation of temper-
ature relationships by SA, resulting in detailed semantics.

The confusion matrix shown in Fig.  4 indicated that 
the detection accuracy of each region differed between 
methods. U-Net GAN + SA showed 5% higher detection 
accuracy for the head than the other methods. For the 
body, U-Net GAN and U-Net GAN + SA showed 5%–6% 
higher accuracy than U-Net. For the arms, U-Net GAN 
was 4–6% more accurate than the other methods, and for 
the legs, U-Net was 1–5% more accurate than the other 
methods. U-Net GAN showed 1–3% higher accuracy for 
the other regions than the other methods. The features of 
the resulting segmented images differed according to the 
method used, although the numerical differences were 
small. U-Net GAN + SA predicted the skin region of the 
infant as “other” less frequently than the other methods, 
which was due to the strict evaluation of pixel-by-pixel 
temperature relationships by SA. The accuracy of U-Net 
GAN + SA was higher for the head and body compared 
to the other methods, while it showed lower accuracy for 
the arm and leg regions due to an increase in the number 
of cases where they were incorrectly detected as other 
skin regions. This was because the arms and legs have 
more variations in shape and positional relationships 
than the head and body, and strictly evaluating the pixel-
by-pixel relationships leads to incorrect predictions. 
Therefore, additional training data and further augmen-
tation are considered necessary for U-Net GAN + SA to 
detect arms and legs more accurately. U-Net and U-Net 
GAN tended to have slightly lower accuracy than U-Net 
GAN + SA. However, SA requires a great deal of process-
ing and large amounts of memory, so it is important to 
consider the device to be used and select the optimal 
method to be applied. In medical applications, it is not 
necessary to evaluate the temperature of areas other than 
the skin, and therefore U-Net GAN + SA is considered to 
be effective. However, further improvements are needed 
for regions where the shape and positional relation-
ships may vary, such as the arms and legs, as the system 
showed degradation of performance in such areas.

The application of this method in clinical settings 
will enable continuous monitoring of temperature in 
each region of the body. Further studies are required to 
confirm the effectiveness of this method in managing 

the body temperature of infants and analyzing various 
diseases.

Further studies are required to evaluate the accuracy 
of measuring the body temperature of infants using our 
method. The segmentation accuracy was evaluated, but 
the impact of this accuracy on the temperature measure-
ment is not yet clear. Furthermore, large amounts of clin-
ical data will be collected and analyzed using the results 
obtained with this method to study the ability to predict 
diseases and other conditions. In this process, the accu-
racy required for segmentation will be clarified. It will be 
necessary to examine these issues through clinical appli-
cation in future studies.

Conclusion
A U-Net-based network was confirmed to be able 
to segment the skin area on thermographic ther-
mal images of infants with high accuracy. FReLU and 
Group Normalization were confirmed to be effec-
tive for thermal image segmentation. GAN was also 
shown to improve the segmentation accuracy, and SA 
achieved fine segmentation even on thermal images 
with few features. These tools contributed to the 
improvement of mIoU, and U-Net GAN + SA showed 
a significant performance improvement over standard 
U-Net.
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